XIE Hong-yu, WANG Ze-hua, KAN Wen-jing, YUAN Ai-hong, YANG Jun, YE Min, SHI Jie, LIU Zhen, TONG Hong-mei, CHA Bi-xiang, LI Bo, YUAN Xu-wen, ZHOU Chao, ZHOU Chao, LIU Xiao-jun
Abstract:Objective:To evaluate the clinical effect and safety of acupuncture manipulation on treatment of intractable facial paralysis (IFP), and verify the practicality and precision of the Anzhong Facial Paralysis Precision Scale (Eyelid Closure Grading Scale, AFPPS-ECGS).Methods:A multicentre, single-blind, randomized controlled trial was conducted from October 2022 to June 2024. Eighty-nine IFP participants were randomly assigned to an ordinary acupuncture group (OAG, 45 cases) and a characteristic acupuncture group (CAG, 44 cases) using a random number table method. The main acupoints selected included Yangbai (GB 14), Quanliao (SI 18), Yingxiang (LI 20), Shuigou (GV 26), Dicang (ST 4), Chengjiang (CV 24), Taiyang (EX-HN 5), Jiache (ST 6), Fengchi (GB 20), and Hegu (LI 4). The OAG patients received ordinary acupuncture manipulation, while the CAG received characteristic acupuncture manipulation. Both groups received acupuncture treatment 3 times a week, with 10 times per course, lasting for 10 weeks. Facial recovery was assessed at baseline and after the 1st, 2nd and 3rd treatment course by AFPPS-ECGS and the House-Brackmann (H-B) Grading Scale. Infrared thermography technology was used to observe the temperature difference between healthy and affected sides in various facial regions. Adverse events and laboratory test abnormalities were recorded. The correlation between the scores of the two scales was analyzed using Pearson correlation coefficient.Results:After the 2nd treatment course, the two groups showed statistically significant differences in AFPPS-ECGS scores (P<0.05), with even greater significance after the 3rd course (P<0.01). Similarly, H-B Grading Scale scores demonstrated significant differences between groups following the 3rd treatment course (P<0.05). Regarding temperature measurements, significant differences in temperatures of frontal and ocular areas were observed after the 2nd course (P<0.05), becoming more pronounced after the 3rd course (P<0.01). Additionally, mouth corner temperature differences reached statistical significance by the 3rd course (P<0.05). No safety-related incidents were observed during the study. Correlation analysis revealed that the AFPPS-ECGS and the H-B Grading Scale were strongly correlated (r=0.86, 0.91, 0.93, and 0.91 at baseline, and after 1st, 2nd, and 3rd treatment course, respectively, all P<0.01).Conclusions:Acupuncture is an effective treatment for IFP, and the characteristic acupuncture manipulation enhances the therapeutic effect. The use of the AFPPS-ECGS can more accurately reflect the recovery status of patients with IFP. (Trial registration No. ChiCTR2200065442)
Abstract:Objective:To investigate the effect of miR-483-5p on hepatocellular carcinoma (HCC) cells proliferation and stemness, as well as the attenuating effect of Pien Tze Huang (PZH).Methods:Differentially expressed miRNA between HepG2 cells and hepatic cancer stem-like cells (HCSCs) were identified by a miRNA microarray assay. miR-483-5p mimics were transfected into HepG2 cells to explore the effects of miR-483-5p on cell proliferation and stemness. HepG2 cells and HCSCs were treated with PZH (0, 0.25, 0.50 and 0.75 mg/mL) to explore the effects of PZH on the proliferation and stemness, both in non-induced state and the state induced by miR-483-5p mimics.Results:miR-483-5p was significantly up-regulated in HCSCs and its overexpression increased cell proliferation and stemness in HepG2 cells (P<0.05). PZH not only significantly inhibited proliferation in HepG2 cells, but also significantly suppressed the cell proliferation and self-renewal of HCSCs (P<0.05). The effects of miR-483-5p mimics on proliferation and stemness of HepG2 cells were partially abolished by PZH.Conclusions:miR-483-5p promotes proliferation and enhances stemness of HepG2 cells, which were attenuated by PZH, demonstrating that miR-483-5p is a potential molecular target for the treatment of HCC and provide experimental evidence to support clinical use of PZH for patients with HCC.
Keywords:Pien Tze Huang;hepatocellular carcinoma;miR-483-5p;proliferation;stemness;Chinese medicine
Abstract:Objective:To evaluate the anti-hepatocellular carcinoma (HCC) activity of total alkaloids from Gelsemium elegans Benth. (TAG) in vivo and in vitro and to elucidate their potential mechanisms of action through transcriptomic analysis.Methods:TAG extraction was conducted, and the primary components were quantified using high-performance liquid chromatography (HPLC). The effects of TAG (100, 150, and 200 μg/mL) on various tumor cells, including SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116, were assessed. Effects of TAG on HCC proliferation and apoptosis were detected by colony formation assays and cell stainings. Caspase-3, Bcl-2, and Bax protein levels were detected by Western blotting. In vivo, a tumor xenograft model was developed using H22 cells. Totally 40 Kunming mice were randomly assigned to model, cyclophosphamide (20 mg/kg), TAG low-dose (TAG-L, 0.5 mg/kg), and TAG high-dose (TAG-H, 1 mg/kg) groups, with 10 mice in each group. Tumor volume, body weight, and tumor weight were recorded and compared during 14-day treatment. Immune organ index were calculated. Tissue changes were oberseved by hematoxylin and eosin staining and immunohistochemistry. Additionally, transcriptomic and metabolomic analyses, as well as quatitative real-time polymerase chain reaction (RT-qPCR), were performed to detect mRNA and metabolite expressions.Results:HPLC successfully identified the components of TAG extraction. Live cell imaging and analysis, along with cell viability assays, demonstrated that TAG inhibited the proliferation of SMMC-7721, HepG2, H22, CAL27, MCF7, HT29, and HCT116 cells. Colony formation assays, Hoechst 33258 staining, Rhodamine 123 staining, and Western blotting revealed that TAG not only inhibited HCC proliferation but also promoted apoptosis (P<0.05). In vivo experiments showed that TAG inhibited the growth of solid tumors in HCC in mice (P<0.05). Transcriptomic analysis and RT-qPCR indicated that the inhibition of HCC by TAG was associated with the regulation of the key gene CXCL13.Conclusion:TAG inhibits HCC both in vivo and in vitro, with its inhibitory effect linked to the regulation of the key gene CXCL13.
Keywords:hepatocellular carcinoma;Gelsemium elegans Benth.;alkaloids;CXCL13;Chinese medicine;traditional Yao medicine
Abstract:Objective:To investigate the regulatory effects of two traditional mineral medicines (TMMs), Gypsum Fibrosum (Shigao, GF) and Terra Flava Usta (Zaoxintu, TFU), on gut-beneficial bacteria in mice, and preliminarily explore their mechanisms of action.Methods:Mice were randomly divided into 3 groups (n=10 per group): the control group (standard diet), the GF group (diet supplemented with 2% GF), and the TFU group (diet supplemented with 2% TFU). After 4-week intervention, 16S rRNA gene sequencing was used to analyze the changes in the gut microbiota (GM). Scanning electron microscopy, in combination with coumarin A tetramethyl rhodamine conjugate and Hoechst stainings, was used to observe the bacteria and biofilm formation.Results:Principal coordinate analysis revealed that GF and TFU significantly altered the GM composition in mice. Further analysis revealed that GF and TFU affected different types of gut bacteria, suggesting that different TMMs may selectively modulate specific bacterial populations. For certain bacteria, such as Faecalibaculum and Ileibacterium, both GF and TFU exhibited growth-promoting effects, implying that they may be sensitive to TMMs and that different TMMs can increase their abundance through their respective mechanisms. Notably, Lactobacillus reuteri, a widely recognized and used probiotic, was significantly enriched in the GF group. Random forest analysis identified Ileibacterium valens as a potential indicator bacterium for TMMs' impact on GM. Further mechanistic studies showed that gut bacteria formed biofilm structures on the TFU surface.Conclusions:This study provides new insights into the interaction between TMMs and GM. As safe and effective natural clays, GF and TFU hold promise as potential candidates for prebiotic development.
Abstract:Objective:To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.Methods:The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 μL of Staphylococcus aureus solution (bacterial concentration of 1×10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 μL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).Results:UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).Conclusions:BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Keywords:bear bile powder;gut flora;acute lung injury;CD14;short chain fatty acids
Abstract:Objective:To investigate the effects of Bushen Huoxue Granule on the ubiquitin-proteasome system (UPS) in an in vitro model of Parkinson's disease.Methods:After treated with 1-methyl-4-phenylpyridinium (MPP+, 1 mmol/L) for 24 h, the cells were incubated with drug-free serum, Madopar-containing serum or Bushen Huoxue Granule-containing serum (BCS, 5%, 10%, and 20%) for another 24 h. The levels of α-synuclein (α-syn), tyrosine hydroxylase (TH) and UPS-related proteins were detected by Western blot. The expression levels of α-syn in PC12 cells were also analyzed by Western blot after treated with proteasome inhibitor MG132 and WT-α-syn plasmid transfection, respectively, as well as the alterations induced by subsequent BCS intervention. Immunocytochemistry was performed to determine the changes in α-syn phosphorylation at serine 129 (pSer129-α-syn) expression. The 20S proteasome levels were measured by enzyme-linked immunosorbnent assay.Results:BCS (volume fraction 20%) intervention could alleviate the MMP+-induced cell viability decrease (P<0.05). In the MPP+ treated cells, α-syn was up-regulated, while TH and proteins of UPS such as ubiquitin (Ub), Ub binding with Ub-activating enzyme (UBE1), Parkin and Ub C-terminal hydrolase-1 (UCHL-1) were down-regulated (P<0.05). BCS intervention could attenuate the above changes (P<0.05). The activity of BCS on blocking α-syn accumulation was weakened by MG132 (P<0.05). While α-syn level was significantly increased in cells transfected with plasmid, and reduced by BCS intervention (P<0.05). pSer129-α-syn was increased in MPP+-induced PC12 cells, whereas decreased by later BCS intervention (P<0.05). The 20S proteasome activity of MPP+-induced PC12 cells was decreased, but increased after BCS intervention (P<0.05).Conclusion:BCS intervention protected UPS function, increased 20S proteasome activity, promoted pathological α-syn clearance, restored cell viability, and reversed the damage caused by MPP+ in the in vitro model of Parkinson's disease.
Abstract:Objectives:To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).Methods:The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 μmol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.Results:The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.Conclusion:SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.