FOLLOWUS
1. Department of Geriatric Cardiology, the Navy General Hospital of Chinese PLA,Beijing,China
2. The Lab of Cardiovascular Molecular Biology, Xiyuan Hospital, China Academy of Chinese Medical Sciences,Beijing,China
纸质出版日期:2015,
网络出版日期:2015-1-14,
Scan for full text
Ma, L., Zhu, Xf., Wu, Yy. et al. Protective effect of propyl gallate against oxidized low-density lipoprotein-induced injury of endothelial cells., Chin. J. Integr. Med. 21, 299–306 (2015). https://doi.org/10.1007/s11655-014-1980-6
Lu Ma, Xiao-fa Zhu, Yu-yun Wu, et al. Protective effect of propyl gallate against oxidized low-density lipoprotein-induced injury of endothelial cells[J]. Chinese Journal of Integrative Medicine, 2015,21(4):299-306.
Ma, L., Zhu, Xf., Wu, Yy. et al. Protective effect of propyl gallate against oxidized low-density lipoprotein-induced injury of endothelial cells., Chin. J. Integr. Med. 21, 299–306 (2015). https://doi.org/10.1007/s11655-014-1980-6 DOI:
Lu Ma, Xiao-fa Zhu, Yu-yun Wu, et al. Protective effect of propyl gallate against oxidized low-density lipoprotein-induced injury of endothelial cells[J]. Chinese Journal of Integrative Medicine, 2015,21(4):299-306. DOI: 10.1007/s11655-014-1980-6.
To evaluate the protective effect of propyl gallate (PG)
an alkyl ester of gallic acid which is an active ingredient of Radix Paeoniae
against oxidized low-density lipoprotein (ox-LDL)-induced apoptosis and death in endothelial cells (ECs) and to find out its preliminary mechanism. The cultured endothelial cells were divided into normal
model (ox-LDL)
control (fetal bovine serum)
PG high dose (20 μg/mL)
PG middle dose (10 μg/mL)
and PG low dose (5 μg/mL) groups
each derived from three different pools of umbilical cords. The model of injured human umbilical vein endothelial cells (HUVECs) was induced by ox-LDL. The 3-(4
5-dimethylthiazol-2-yl)-2
5-diphenyl-2H-tetrazolium bromide (MTT) assay
Hoechst 33258 staining
flow cytometry and measurement of nitrogen monoxidum (NO) release were used to evaluate the protective effect of PG against ox-LDL-induced apoptosis and death in HUVECs. To find out the mechanism of this protective effect
the expression of endothelial nitric oxide synthase (eNOS) mRNA
eNOS protein expression
immunofluorescence of intracellular reactive oxygen species (ROS) and activities of malondialdehyde (MDA)
superoxidedismutase (SOD) and glutathione peroxidase (GPx) were observed. PG significantly reduced ox-LDL-induced apoptosis and cell death. The percentage of cells death and apoptosis was significantly higher in the ox-LDL group than that in the control group (P<0.05). Compared with the control group
the cells death and apoptosis of PG group was no different (P>0.05). As compared with the ox-LDL group
results of the PG high dose group showed that cell viability was significantly increased (P<0.05)
the level of NO release
expression of eNOS mRNA
densitometric value of eNOS protein expression
as well as the activities of SOD and GPx were all significantly higher (all P<0.05). PG could potentially serve as a novel endothelial protective agent against ox-LDL-induced injury of endothelial cell.
To evaluate the protective effect of propyl gallate (PG)
an alkyl ester of gallic acid which is an active ingredient of Radix Paeoniae
against oxidized low-density lipoprotein (ox-LDL)-induced apoptosis and death in endothelial cells (ECs) and to find out its preliminary mechanism. The cultured endothelial cells were divided into normal
model (ox-LDL)
control (fetal bovine serum)
PG high dose (20 μg/mL)
PG middle dose (10 μg/mL)
and PG low dose (5 μg/mL) groups
each derived from three different pools of umbilical cords. The model of injured human umbilical vein endothelial cells (HUVECs) was induced by ox-LDL. The 3-(4
5-dimethylthiazol-2-yl)-2
5-diphenyl-2H-tetrazolium bromide (MTT) assay
Hoechst 33258 staining
flow cytometry and measurement of nitrogen monoxidum (NO) release were used to evaluate the protective effect of PG against ox-LDL-induced apoptosis and death in HUVECs. To find out the mechanism of this protective effect
the expression of endothelial nitric oxide synthase (eNOS) mRNA
eNOS protein expression
immunofluorescence of intracellular reactive oxygen species (ROS) and activities of malondialdehyde (MDA)
superoxidedismutase (SOD) and glutathione peroxidase (GPx) were observed. PG significantly reduced ox-LDL-induced apoptosis and cell death. The percentage of cells death and apoptosis was significantly higher in the ox-LDL group than that in the control group (P<0.05). Compared with the control group
the cells death and apoptosis of PG group was no different (P>0.05). As compared with the ox-LDL group
results of the PG high dose group showed that cell viability was significantly increased (P<0.05)
the level of NO release
expression of eNOS mRNA
densitometric value of eNOS protein expression
as well as the activities of SOD and GPx were all significantly higher (all P<0.05). PG could potentially serve as a novel endothelial protective agent against ox-LDL-induced injury of endothelial cell.
propyl gallateoxidized low-density lipoproteinendotheliocytereactive oxygen speciesRadix PaeoniaeChinese Medicine
propyl gallateoxidized low-density lipoproteinendotheliocytereactive oxygen speciesRadix PaeoniaeChinese Medicine
Ximenes VF, Lopes MG, Petrônio MS, Regasini LO, Silva DH, da Fonseca LM. Inhibitory effect of gallic acid and its esters on 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes. J Agric Food Chem 2010;58:5355–5362.
Chen CH, Liu TZ, Chen CH, Wong CH, Chen CH, Lu FJ, et al. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells. Mol Nutr Food Res 2007;51:962–968.
Voyta JC, Via DP, Butterfield CE, Zetter BR. Identification and isolation of endothelial cells based on their increased uptake of acetylated low density lipoprotein. J Cell Biol 1984;99:2034–2040.
Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 1984;81:3883–3887.
Mangin E Jr, Kugiyama K, Nguy J, Kerns S, Henry PD. Effects of lysolipids and oxidatively modified low density lipoprotein on endothelium-dependent relaxation of rabbit aorta. Circ Res 1993;72:161–166.
Chen CH, Cartwright J Jr, Li Z, Luo S, Nguyen HH, Gotto AM Jr, et al. Inhibitory effects of hypercholesterolemia and oxidized LDL on angiogenesis-like endothelial growth in rabbit aortic explants: essential role of basic fibroblast growth factor. Arterioscler Thromb Vasc Biol 1997;17:1303–1312.
Upreti GC, Wang Y, Finn A, Sharrock A, Feisst N, Davy M, Jordan RB. U-2012: an improved Lowry protein assay, insensitive to sample color, offering reagent stability and enhanced sensitivity. Biotechniques 2012;52:159–166.
Fukuda M, Tsuchihashi Y, Takamatsu T, Nakanishi K, Fujita S. Fluorescence fading and stabilization in cytofluorometry. Histochemistry 1980;65:269–276.
Keller R, Keist T, Wechsler A, Leist TP, van der Meide PH. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 1990;46:682–686.
Shao ZH, Li CQ, Vanden Hoek TL, Becker LB, Schumacker PT, Wu JA, et al. Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes. J Mol Cell Cardiol 1999;31:1885–1895.
Iqbal J, Whitney P. Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic Biol Med 1991;10:69–77.
Richard MJ, Portal B, Meo J, Coudray C, Hadjian A, Favier A. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem 1992;38:704–709.
Noels H, Zhou B, Tilstam PV, Theelen W, Li X, Pawig L, et al. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol 2014;346:1209–1220.
Xu H, Wang D, Peng C, Huang X, Ou M, Wang N, et al. Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha—activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J Cardiovasc Pharmacol 2014;63:323–332.
Liu J, Yao S, Wang S, Jiao P, Song G, Yu Y, et al. D-4F, an apolipoprotein A-I mimetic peptide, protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation of pigment epithelium-derived factor expression. J Cardiovasc Pharmacol 2014;63:553–561.
Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther 2002;302:601–605.
Nishimura S, Akagi M, Yoshida K, et al. Oxidized lowdensity lipoprotein (ox-LDL) binding to lectin-like ox-LDL receotor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular ROS resulting in the activation of NF-kappaB. Osteoarthr Cartil 2004;12:568–576.
Cominacini L, Pasini AF, Garbin C, Davoli A, Tosetli ML, Campagnola M, et al. Ox-LDL binding to ox-LDL receotor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Bio Chem 2000;275:12633–12636.
Yu J, Piao BK, Pei YX, Qi X, Hua BJ. Protective effects of tetrahydropalmatine against gamma-radiation induced damage to human endothelial cells. Life Sci 2010;87:55–63.
Zhou YJ, Yang HW, Wang XG, Zhang H. Hepatocyte growth factor prevents advanced glycation end products-induced injury and oxidative stress through a PI3K/Aktdependent pathway in human endothelial cells. Life Sci 2009;85:670–677.
Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther 2013;27:371–380.
Chiou CS, Lin JW, Kao PF, Liu JC, Cheng TH, Chan P. Effects of hesperidin on cyclic strain-induced endothelin-1 release in human umbilical vein endothelial cells. Clin Exp Pharm Physiol 2008;35:938–943.
Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27:612–616.
0
浏览量
84
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构