FOLLOWUS
1.Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital,Yangzhou, Jiangsu Province (225001), China
2.The First Clinical Medical College of Dalian Medical University, Dalian,Liaoning Province (116044), China
WANG Hui-hui, E-mail: wanghuihui19891021@163.com
纸质出版日期:2022-02-01,
网络出版日期:2021-12-07,
录用日期:2021-04-28
Scan for full text
Ping GENG, Bing-yu LING, Hong-liang ZHANG, 等. Xuebijing Injection Ameliorates H2S-Induced Acute Respiratory Distress Syndrome by Promoting Claudin-5 Expression[J]. Chinese Journal of Integrative Medicine, 2022,28(2):116-123.
Ping GENG, Bing-yu LING, Hong-liang ZHANG, et al. Xuebijing Injection Ameliorates H2S-Induced Acute Respiratory Distress Syndrome by Promoting Claudin-5 Expression[J]. Chinese Journal of Integrative Medicine, 2022,28(2):116-123.
Ping GENG, Bing-yu LING, Hong-liang ZHANG, 等. Xuebijing Injection Ameliorates H2S-Induced Acute Respiratory Distress Syndrome by Promoting Claudin-5 Expression[J]. Chinese Journal of Integrative Medicine, 2022,28(2):116-123. DOI: 10.1007/s11655-021-3344-3.
Ping GENG, Bing-yu LING, Hong-liang ZHANG, et al. Xuebijing Injection Ameliorates H2S-Induced Acute Respiratory Distress Syndrome by Promoting Claudin-5 Expression[J]. Chinese Journal of Integrative Medicine, 2022,28(2):116-123. DOI: 10.1007/s11655-021-3344-3.
目的:
2
探讨血必净注射液 (XBJ) 对硫化氢 (H
2
S) 诱导的急性呼吸窘迫综合征 (ARDS) 的肺内皮屏障功能的保护作用及其机制.
方法:
2
将SD大鼠暴露于H
2
S (300ppm) 中建立ARDS大鼠模型
将人肺微血管内皮细胞 (HPMEC) 与NaHS (H
2
S的供体
500μmol/L) 共同孵育建立ARDS细胞模型. 大鼠和细胞模型分别用H
2
S和XBJ处理. 在体内实验中通过苏木精-伊红染色、免疫组织化学染色、透射电镜和干/湿比来观察H
2
S诱导的ARDS模型中的肺组织情况. 然后分别在体内和体外实验中评估claudin-5、磷酸化蛋白激酶B (p-AKT/t-AKT) 和p-叉头框转录因子O1 (FoxO1/t-FoxO1) 表达水平. 在细胞模型中通过测量细胞旁通透性和跨上皮电阻 (TEER) 以评估内皮屏障功能.
结果:
2
通过形态学观察显示XBJ能改善H
2
S诱导的大鼠ARDS的肺损伤. NaHS处理的人肺微血管内皮细胞中跨上皮电阻降低和细胞旁通透性增加
而XBJ可以逆转以上现象 (
P
<
0.05) . 磷脂酰肌醇3-激酶PI3K/AKT/FoxO1通路抑制剂LY294002阻断XBJ的保护作用 (
P
<
0.05) . 此外
XBJ可提高体内剂体外claudin-5、p-AKT和p-FoxO1蛋白的表达水平 (
p
<
0.05) .
结论:
2
血必净注射液通过PI3K/AKT/FoxO1信号通路促进claudin-5的表达
从而改善H
2
S诱导的ARDS.
Objective:
2
To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H
2
S)-induced acute respiratory distress syndrome (ARDS).
Methods:
2
Sprague-Dawley rats were exposed to H
2
S (300 ppm) to establish ARDS model
while human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H
2
S donor
500 μmol/L) to establish cell model. H
2
S and XBJ were concurrently administered to the rat and cell models. Lung hematoxylin and eosin staining
immunohistochemistry
transmission electron microscopy and wet/dry ratio measurement were used to confirm ARDS induced by H
2
S
in vivo
. The expression levels of claudin-5
phosphorylated protein kinase B (p-AKT)/t-AKT and p-forkhead box transcription factor O1 (FoxO1)/t-FoxO1
in vivo
and
in vitro
were also assessed. Paracellular permeability and transepithelial electrical resistance (TEER) were measured to evaluate endothelial barrier function in the cell model.
Results:
2
The morphological investigation showed that XBJ attenuated H
2
S-induced ARDS in rats. XBJ significantly ameliorated both the reduction in TEER and the increased paracellular permeability observed in NaHS-treated HPMECs (
P
<
0.05). The protective effects of XBJ were blocked by LY294002
a phosphatidylinositol 3-kinase (PI3K)/AKT/FoxO1 pathway antagonist (
P
<
0.05). Furthermore
XBJ promoted the expression of claudin-5 and increased the levels of p-AKT and p-FoxO1
in vivo
and
in vitro
(
P
<
0.05).
Conclusion:
2
XBJ ameliorated H2S-induced ARDS by promoting claudin-5 expression via the PI3K/AKT/FoxO1 signaling pathway.
acute respiratory distress syndromeXuebijing Injectionhydrogen sulfideclaudin-5phosphatidylinositol 3-kinase
Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342:1334-1349.
Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J,Rock P. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 2011;306:1574-1581.
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung microvascular niche, repair, and engineering. Front Bioeng Biotechnol 2020;8:105.
Weber CR. Dynamic properties of the tight junction barrier. Ann N Y Acad Sci 2012;1257:77-84.
Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol 2018;10:a029314.
Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Bioly 2001;2:285-293.
Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal 2011;15:1179-1193.
Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, et al. Predicted expansion of the claudin multigene family. FEBS Lett 2011;585:606-612.
Kaarteenaho R, Merikallio H, Lehtonen S, Harju T, Soini Y.Divergent expression of claudin -1, -3, -4, -5 and -7 in developing human lung. Respir Res 2010;11:59.
Schlingmann B, Overgaard CE, Molina SA, Lynn KS, Mitchell LA,White SCD, et al. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat Commun 2016;7:12276.
Clark PR, Kim RK, Pober JS, Kluger MS. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS One 2015;10:e0120075.
Aveleira CA, Lin CM, Abcouwer SF, Ambrósio AF, Antonetti DA.TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes 2010;59:2872-2882.
Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T.Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 2007;210:81-86.
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al.Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003;161:653-660.
Fang K, Wang XL. Treatment of multiple organ dysfunction syndrome by Xuebijing Injection: a clinical research. Chin J Integr Tradit West Med (Chin) 2013;33:205-207.
Dai YL, Li JY, Bai HY, Liu S, Dou YQ, Hu S. Xuebijing Injection increases early survival rate by alleviating pulmonary vasopermeability in rats subjected to severe burns. Chin J Integr Med 2017;23:703-708.
Sun J, Xue Q, Guo L, Cui L, Wang J. Xuebijing protects against lipopolysaccharide-induced lung injury in rabbits. Exp Lung Res 2010;36:211-218.
Shi X, Chen GN, Wei J, Feng D, Chen YL, Zhou HP, et al.UHPLC-Q-TOF MS-based metabolic analysis for the therapeutic efficacy of "Xuebijing Injection" against sepsis-induced acute lung injury. Evid Based Complement Alternat Med 2018;2018:8514619.
He F, Wang J, Liu Y, Wang XJ, Cai Na, Wu C, et al. Xuebijing Injection induces anti-inflammatory-like effects and downregulates the expression of TLR4 and NF-κB in lung injury caused by dichlorvos poisoning. Biomed Pharmacother 2018;106:1404-1411.
Qian H, Liu B, Shen F, Wu YQ, Yang HL, Cheng YM, et al. Xuebijing improves clinical prognosis and reduces mortality in patients with acute paraquat poisoning: a meta-analysis included 1429 patients.Chin Crit Care Med (Chin) 2019;31:1416-1422.
Chen X, Feng Y, Shen X, Pan GX, Fan GW, Gao XM, et al. Anti-sepsis protection of Xuebijing injection is mediated by differential regulation of pro- and anti-inflammatory Th17 and T regulatory cells in a murine model of polymicrobial sepsis. J Ethnopharmacol 2018;211:358-365.
Cheng C, Lin JZ, Li L, Yang JL, Jia WW, Huang YH, et al.Pharmacokinetics and disposition of monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) after intravenous dosing of antiseptic XueBiJing Injection in human subjects and rats. Acta Pharmacol Sin 2016;37:530-544.
Li X, Cheng C, Wang F, Huang YH, Jia WW, Olaleye OE, et al.Pharmacokinetics of catechols in human subjects intravenously receiving XueBiJing Injection, an emerging antiseptic herbal medicine. Drug Metab Pharmacokinet 2016;31:95-98.
Prior MG, Sharma AK, Yong S, Lopez A. Concentration-time interactions in hydrogen sulphide toxicity in rats. Can J Vet Res 1988;52:375-379.
Prior M, Green F, Lopez A, Balu A, De Sanctis GT, Fick G.Capsaicin pretreatment modifies hydrogen sulphide-induced pulmonary injury in rats. Toxicol Patholy 1990;18:279-288.
Wang J, Zhang H, Su C, Chen JJ, Zhu BL, Zhang HD, et al.Dexamethasone ameliorates H2S-induced acute lung injury by alleviating matrix metalloproteinase-2 and -9 expression. PLoS One 2014;9:e94701.
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.JAMA 2016;315:788-800.
Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009;297:L219-L227.
Bijli KM, Fazal F, Slavin SA, Leonard A, Grose V, Alexander WB,et al. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016;311:L517-L524.
Li C, Wang P, Zhang L, Li M, Lei X, Liu S, et al. Efficacy and safety of Xuebijing Injection (a Chinese patent) for sepsis: a meta-analysis of randomized controlled trials. J Ethnopharmacol 2018;224:512-521.
Wang Q, Wu X, Tong X, Zhang Z, Xu B, Zhou W. Xuebijing ameliorates sepsis-induced lung injury by downregulating HMGB1 and RAGE expressions in mice. Evid Based Complement Alternat Med 2015;2015:860259.
Wang YP, Guo Y, Wen PS, Zhao ZZ, Xie J, Yang K, et al. Three ingredients of safflower alleviate acute lung injury and inhibit NET release induced by lipopolysaccharide. Mediators Inflamm 2020;2020:2720369.
Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y. Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol 2015;427:291-297.
Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin:claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 1999;147:185-194.
Mari A, Mani G, Nagabhishek SN, Balaraman G, Subramanian N,Mirza FB, et al. Carvacrol promotes cell cycle arrest and apoptosis through PI3K/AKT signaling pathway in MCF-7 breast cancer cells.Chin J Integr Med 2021;27:680-687.
Sun JP, Shi L, Wang F, Qin J, Ke B. Modified Linggui Zhugan Decoction ameliorates glycolipid metabolism and inflammation via PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α signaling pathways in obese type 2 diabetic rats. Chin J Integr Med 2020 [Epub ahead of print]
Szydlowski M, Jablońska E, Juszczyński P. FOXO1 transcription factor: a critical effector of the PI3K-AKT axis in B-cell development.Int Rev Immunol 2014;33:146-157.
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-868.
Chen H, Lin AS, Li Y, Reiter CE, Ver MR, Quon MJ.Dehydroepiandrosterone stimulates phosphorylation of FoxO1 in vascular endothelial cells via phosphatidylinositol 3-kinase- and protein kinase A-dependent signaling pathways to regulate ET-1 synthesis and secretion. J Biol Chem 2008;283:29228-29238.
Spassov SG, Donus R, Ihle PM, Engelstaedter H, Hoetzel A, Faller S. Hydrogen sulfide prevents formation of reactive oxygen species through PI3K/Akt signaling and limits ventilator-induced lung injury.Oxid Med Cell Longev 2017;2017:3715037.
Artham S, Gao F, Verma A, Alwhaibi A, Sabbineni H, Hafez S,et al. Endothelial stromelysin1 regulation by the forkhead box-O transcription factors is crucial in the exudative phase of acute lung injury. Pharmacol Res 2019;141:249-263.
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构