FOLLOWUS
1.Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha (410208), China
2.Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine,Hunan University of Chinese Medicine, Changsha (410208),China
3.Department of Pharmacy, Shenzhen People's Hospital(the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen (518020), Guangdong Province, China
4.Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha (410006),China
Prof. TIAN Xue-fei, E-mail: 003640@hnucm.edu.cn
纸质出版日期:2022-07-01,
网络出版日期:2021-08-25,
录用日期:2021-04-02
Scan for full text
Zhen ZHANG, Jun-wei LI, Pu-hua ZENG, 等. 利用数据挖掘和系统药理学方法阐明中药治疗原发性肝癌的疗效和机制[J]. Chinese Journal of Integrative Medicine, 2022,28(7):636-643.
Zhen ZHANG, Jun-wei LI, Pu-hua ZENG, et al. Data Mining and Systems Pharmacology to Elucidate Effectiveness and Mechanisms of Chinese Medicine in Treating Primary Liver Cancer[J]. Chinese Journal of Integrative Medicine, 2022,28(7):636-643.
Zhen ZHANG, Jun-wei LI, Pu-hua ZENG, 等. 利用数据挖掘和系统药理学方法阐明中药治疗原发性肝癌的疗效和机制[J]. Chinese Journal of Integrative Medicine, 2022,28(7):636-643. DOI: 10.1007/s11655-021-3449-8.
Zhen ZHANG, Jun-wei LI, Pu-hua ZENG, et al. Data Mining and Systems Pharmacology to Elucidate Effectiveness and Mechanisms of Chinese Medicine in Treating Primary Liver Cancer[J]. Chinese Journal of Integrative Medicine, 2022,28(7):636-643. DOI: 10.1007/s11655-021-3449-8.
目的:
2
确定可能对原发性肝癌患者有益的特定中药
并探讨这些药物的作用机制.
方法:
2
这是一项回顾性、单中心研究
利用肝癌患者的处方信息与传统中医传承支持系统相结合
确定特定核心药
并采用系统药理学方法探索这些药物的作用机制.
结果:
2
服用中药6 个月以上与改善肝癌患者生存结果显著相关. 共确认特定核心药物 的 77 个推定靶标和 116 种生物活性成分
并将其纳入分析. 共发现1036 个Gene Ontology术语在肝癌中富集
从 Kyoto Encyclopedia of Genes 和Genomes 共鉴定出 75 条通路
包括流体剪切应力、白细胞介素17 信号传导、晚期聚糖终产物及其受体之间的信号传导、细胞衰老、肿瘤坏死因子信号传导、p53 信号传导、细胞周期信号、类固醇激素生物合成、T-helper 17 细胞分化和细胞色素对异生素的代谢. 对接研究表明
特定核心药物的成分通过调节 c-Jun 和白细胞介素 6 在肝癌中发挥治疗作用.
结论:
2
中药治疗6个月以上可提高肝癌患者的生存率. 真正对肝癌患者有益的特定核心药物可能通过调节肿瘤微环境和肿瘤本身发挥作用.
Objective:
2
To identify specific Chinese medicines (CM) that may benefit patients with primary liver cancer (PLC)
and to explore the mechanism of action of these medicines.
Methods:
2
In this retrospective
singlecenter study
prescription information from PLC patients was used in combination with Traditional Chinese Medicine Inheritance Supports System to identify the specific core drugs. A system pharmacology approach was employed to explore the mechanism of action of these medicines.
Results:
2
Taking CM more than 6 months was significantly associated with improved survival outcomes. In total
77 putative targets and 116 bioactive ingredients of the core drugs were identified and included in the analysis (
P
<
0.05). A total of 1
036 gene ontology terms were found to be enriched in PLC. A total of 75 pathways identified from Kyoto Encyclopedia of Genes and Genomes were also enriched in this disease
including fluid shear stress
interleukin-17 signaling
signaling between advanced glycan end products and their receptors
cellular senescence
tumor necrosis factor signaling
p53 signaling
cell cycle signaling
steroid hormone biosynthesis
T-helper 17 cell differentiation
and metabolism of xenobiotics by cytochrome. Docking studies suggested that the ingredients in the core drugs exert therapeutic effects in PLC by modulating c-Jun and interleukin-6.
Conclusions:
2
Receiving CM for 6 months or more improves survival for the patients with PLC. The core drugs that really benefit for PLC patients likely regulates the tumor microenvironment and tumor itself.
Chinese medicineprimary liver cancersystem pharmacologybioinformaticstumor microenvironment
Ahmed S, de Souza NN, Qiao W, Kasai M, Keem LJ, Shelat VG.Quality of life in hepatocellular carcinoma patients treated with transarterial chemoembolization. HPB Surg 2016;2016:6120143.
Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin 2005;55:10-30.
Li X, Xu X, Wang J, Yu H, Wang X, Yang H, et al. A system-level investigation into the mechanisms of Chinese traditional medicine: Compound Danshen Formula for cardiovascular disease treatment. PLoS One 2012;7:e43918.
Zhou W, Wu J, Zhu Y, Meng Z, Liu X, Liu S, et al. Study on the mechanisms of compound Kushen Injection for the treatment of gastric cancer based on network pharmacology. BMC Complement Med Ther 2020;20:6.
Zhu N, Hou J. Exploring the mechanism of action Xianlingubao Prescription in the treatment of osteoporosis by network pharmacology. Comput Biol Chem 2020;85:107240.
Sun JH, Sun F, Yan B, Li JY, Xin L. Data mining and systematic pharmacology to reveal the mechanisms of traditional Chinese medicine in mycoplasma pneumoniae pneumonia treatment.Biomed Pharmacother 2020;125:109900.
He LJ, Zhu XD. Analysis on regularity of prescriptions in "a guide to clinical practice with medical record" for diarrhoea based on traditional Chinese medicine inheritance support system. China J Chin Mater Med (Chin) 2016;41:2344-2349.
Dai QL, Jiang F, Wang J, Gong CL, Shi MY. Based on traditional Chinese medicine inheritance support system to analyze the regularity of umbilicus application to treat ascites due to cirrhosis.China J Chin Mater Med (Chin) 2018;43:4541-4546.
Commission CP, ed. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science Press; 2020.
Xu HY, Zhang YQ, Liu ZM, Chen T, Lyu CY, Tang SH, et al.ETCM: an encyclopaedia of traditional Chinese medicine.Nucleic Acids Res 2019;47:D976-976, D982.
Wang D, Gu J, Zhu W, Luo F, Chen L, Xu X, et al. PDTCM: a systems pharmacology platform of traditional Chinese medicine for psoriasis. Ann Med 2017;49:652-660.
Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014;6:13.
Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci Rep 2016;6:21146.
Liu H, Wang J, Zhou W, Wang Y, Yang L. Systems approaches and polypharmacology for drug discovery from herbal medicines:an example using licorice. J Ethnopharmacol 2013;146:773-793.
Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 2015;86:2-10.
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D,et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36:D901-D906.
Li J, Zhao P, Li Y, Tian Y, Wang Y. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci Rep 2015;5:15290.
Yan G, Wang X, Chen Z, Wu X, Pan J, Huang Y, et al. In-silico ADME studies for new drug discovery: from chemical compounds to Chinese herbal medicines. Curr Drug Metab 2017;18:535-539.
Chen CL, Tsai YS, Huang YH, Liang YJ, Sun YY, Su CW, et al.Lymphoid enhancer factor 1 contributes to hepatocellular carcinoma progression through transcriptional regulation of epithelial-mesenchymal transition regulators and stemness genes. Hepatol Commun 2018;2:1392-1407.
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.
Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis.Bioinformatics 2015;31:2912-2914.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN,Weissig H, et al. The protein data bank. Nucleic Acids Res 2000;28:235-242.
Noguchi T, Akiyama Y. PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB)in 2003. Nucleic Acids Res 2003;31:492-493.
Szczepankiewicz BG, Kosogof C, Nelson LT, Liu G, Liu B,Zhao H, et al. Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity.J Med Chem 2006;49:3563-3580.
Boulanger MJ, Chow DC, Brevnova EE, Garcia KC. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 2003;300:2101-2104.
Shiani A, Narayanan S, Pena L, Friedman M. The role of diagnosis and treatment of underlying liver disease for the prognosis of primary liver cancer. Cancer Control 2017;24:1073274817729240.
Momin BR, Pinheiro PS, Carreira H, Li C, Weir HK. Liver cancer survival in the United States by race and stage (2001–2009):fi ndings from the CONCORD-2 study. Cancer 2017;123 Suppl 24:5059-5078.
Wang M, Ye Q, Mao D, Li H. Research progress in liver-regenerating microenvironment and DNA methylation in hepatocellular carcinoma: the role of traditional Chinese medicine. Med Sci Monit 2020;26:e920310.
Liu X, Li M, Wang X, Dang Z, Yu L, Wang X, et al. Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma.Phytomedicine 2019;62:152930.
Jain RK. Normalizing tumor microenvironment to treat cancer:bench to bedside to biomarkers. J Clin Oncol 2013;31:2205-2218.
Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 2014;16:321-346.
Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 2013;73:3833-3841.
Triantafillu UL, Park S, Klaassen NL, Raddatz AD, Kim Y.Fluid shear stress induces cancer stem cell-like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. Int J Oncol 2017;50:993-1001.
Hyler AR, Baudoin NC, Brown MS, Stremler MA, Cimini D,Davalos RV, et al. Fluid shear stress impacts ovarian cancer cell viability, subcellular organization, and promotes genomic instability. PLoS One 2018;13:e0194170.
Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity 2004;21:467-476.
Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, et al.Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 2009;50:980-989.
Kohles N, Nagel D, Jüngst D, Stieber P, Holdenrieder S.Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE, and DNase in liver cancer patients receiving transarterial chemoembolization therapy. Tumour Biol 2012;33:2401-2409.
Li J, Wu PW, Zhou Y, Dai B, Zhang PF, Zhang YH, et al. Rage induces hepatocellular carcinoma proliferation and sorafenib resistance by modulating autophagy. Cell Death Dis 2018;9:225.
Palanissami G, Paul S. RAGE and its ligands: molecular interplay between glycation, inflammation, and hallmarks of cancer-a review. Horm Cancer 2018;9:295-325.
Dogra G, Chakravarti A, Kar P, Chawla YK. Polymorphism of tumor necrosis factor-α and interleukin-10 gene promoter region in chronic hepatitis C virus patients and their effect on pegylated interferon-α therapy response. Hum Immunol 2011;72:935-939.
Shi HZ, Ren P, Lu QJ, Niedrgethmnn M, Wu GY. Association between EGF, TGF-β1 and TNF-α gene polymorphisms and hepatocellular carcinoma. Asian Pac J Cancer Prev 2012;13:6217-6220.
Wang JJ, Wang ZB, Tan TC. Association of CTLA-4, TNF alpha and IL 10 polymorphisms with susceptibility to hepatocellular carcinoma. Scand J Immunol 2019;90:e12819.
Zhang M, Hu J, Li H, Zhang S, Hu W, Wu L, et al. High TNF-α and/or p38MAPK expression predicts a favourable prognosis in patients with T1N0M0 hepatocellular carcinoma: an immunohistochemical study. Oncol Lett 2019;17:4948-4956.
Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009;9:749-758.
Chen Y, Chen G, Li J, Huang YY, Li Y, Lin J, et al. Association of tumor protein p53 and ataxia-telangiectasia mutated comutation with response to immune checkpoint inhibitors and mortality in patients with non-small cell lung cancer. JAMA Netw Open 2019;2:e1911895.
Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response. J Cell Sci 2020;133:jcs237453.
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构