FOLLOWUS
1.JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou (510632), China
2.Department of TCM Preventive Medicine, Tianhe District Hospital of Traditional Chinese Medicine, Guangzhou (510632), China
3.Institute of Traditional Chinese Medicine and Natural Products,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou (510632), China
Dr. LI Man-mei, E-mail: jnulimanmei1209@126.com
纸质出版日期:2022-05-01,
网络出版日期:2021-09-28,
录用日期:2021-05-10
Scan for full text
Yu-wei PAN, Dong-ping WU, Hua-feng LIANG, 等. 三七总皂苷通过激活Akt/mTOR信号通路发挥神经保护作用保护脑缺血损伤[J]. Chinese Journal of Integrative Medicine, 2022,28(5):410-418.
Yu-wei PAN, Dong-ping WU, Hua-feng LIANG, et al. Total Saponins of
Yu-wei PAN, Dong-ping WU, Hua-feng LIANG, 等. 三七总皂苷通过激活Akt/mTOR信号通路发挥神经保护作用保护脑缺血损伤[J]. Chinese Journal of Integrative Medicine, 2022,28(5):410-418. DOI: 10.1007/s11655-021-3454-y.
Yu-wei PAN, Dong-ping WU, Hua-feng LIANG, et al. Total Saponins of
目的:
2
揭示三七总皂苷 (TSPN) 在脑缺血再灌注损伤和皮层神经元细胞氧糖剥夺再灌注 (OGD/R) 中的神经保护作用及其作用机制.
方法:
2
在体外
通过MTT、流式和live/dead cell assay实验评估TSPN对神经元的保护作用
通过免疫荧光染色的方法观察突触的形态. 大脑中动脉阻塞 (MCAO) 是一种在小鼠体内模拟脑缺血再灌注的模型
通过神经评分、悬尾实验、TTC染色和尼氏染色的方法评估TSPN的神经保护作用. 通过Western blot、免疫组化和免疫荧光的方法检测TSPN对Akt/mTOR信号通路的影响.
结果:
2
在OGD/R模型中
MTT结果显示50
25及12.5 μg/mL TSPN能有效保护皮层神经元细胞 (
P
<
0.01 或
P
<
0.05)
流式和live/dead cell assay实验结果表明25 μg/mL TSPN 能抑制神经元细胞凋亡 (
P
<
0.05)
免疫荧光染色结果说明25 μg/mL TSPN 能恢复损伤皮层神经元细胞的形态 (
P
<
0.05) . 12.5 μg/mL TSPN 能抑制Beclin-1、Cleaved-caspase 3和LC3B-Ⅱ/LC3B-Ⅰ的升高
并且恢复p-Akt及p-mTOR的表达 (
P
<
0.01 或
P
<
0.05) . 在MCAO 模型中
50 μg/mL TSPN能改善小鼠的神经行为损伤并降低脑梗死体积 (
P
<
0.05)
减少Beclin-1及LC3B在缺血半暗带的表达
恢复p-mTOR的水平.
结论:
2
在OGD/R模型中
TSPN可能是通过缓解神经功能损伤并抑制神经元死亡
从而恢复突触完整性
保护神经元. TSPN发挥神经保护作用的机制可能是恢复p-mTOR抑制Beclin-1.
Objective:
2
To reveal the neuroprotective effect and the underlying mechanisms of a mixture of the main components of
Panax notoginseng
saponins (TSPN) on cerebral ischemia-reperfusion injury and oxygenglucose deprivation/reoxygenation (OGD/R) of cultured cortical neurons.
Methods:
2
The neuroprotective effect of TSPN was evaluated by 3-(4
5-dimethylthiazol-2-yl)-2
5-diphenyl tetrazolium bromide (MTT) assay
flow cytometry and live/dead cell assays. The morphology of dendrites was detected by immunofluorescence. Middle cerebral artery occlusion (MCAO) was developed in rats as a model of cerebral ischemia-reperfusion. The neuroprotective effect of TSPN was evaluated by neurological scoring
tail suspension test
2
3
5-triphenyltetrazolium chloride (TTC) and Nissl stainings. Western blot analysis
immunohistochemistry and immunofluorescence were used to measure the changes in the Akt/mammalian target of rapamycin (mTOR) signaling pathway.
Results:
2
MTT showed that TSPN (50
25 and 12.5 μg/mL) protected cortical neurons after OGD/R treatment (
P
<
0.01 or
P
<
0.05). Flow cytometry and live/dead cell assays indicated that 25 μg/mL TSPN decreased neuronal apoptosis (
P
<
0.05)
and immunofluorescence showed that 25 μg/mL TSPN restored the dendritic morphology of damaged neurons (
P
<
0.05). Moreover
12.5 μg/mL TSPN downregulated the expression of Beclin-1
Cleaved-caspase 3 and LC3B-Ⅱ/LC3B-Ⅰ
and upregulated the levels of phosphorylated (p)-Akt and p-mTOR (
P
<
0.01 or
P
<
0.05). In the MCAO model
50 μg/mL TSPN improved defective neurological behavior and reduced infarct volume (
P
<
0.05). Moreover
the expression of Beclin-1 and LC3B in cerebral ischemic penumbra was downregulated after 50 μg/mL TSPN treatment
whereas the p-mTOR level was upregulated (
P
<
0.05 or
P
<
0.01).
Conclusions:
2
TSPN promoted neuronal survival and protected dendrite integrity after OGD/R and had a potential therapeutic effect by alleviating neurological deficits and reversing neuronal loss. TSPN promoted p-mTOR and inhibited Beclin-1 to alleviate ischemic damage
which may be the mechanism that underlies the neuroprotective activity of TSPN.
total saponins of Panax notoginsengoxygen-glucose deprivation and reoxygenationneuroprotectionischemia-reperfusionAkt/mTOR pathwayChinese medicine
Pandian JD, Gall SL, Kate MP, Silva GS, Akinyemi RO, Ovbiagele BI, et al. Prevention of stroke: a global perspective. Lancet 2018;392:1269-1278.
Mueller M, Khamis D, Srivastava D, Exadaktylos AK,Pfortmueller CA. Understanding refugees' health. Semin Neurol 2018;38:152-162.
Kim J, Fann DY, Seet RCS, Jo D, Mattson MP, Arumugam TV. Phytochemicals in ischemic stroke. Neuromolecular Med 2016;18:283-305.
Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia the ischemic penumbra. Stroke 1981;12:723-725.
Chauhan A, Sharma U, Jagannathan NR, Reeta KH, Gupta YK. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res 2011;225:603-609.
Zhan L, Liu L, Li K, Wu B, Liu D, Liang D, et al. Neuroprotection of hypoxic postconditioning against global cerebral ischemia through influencing posttranslational regulations of heat shock protein 27 in adult rats. Brain Pathol 2017;27:822-838.
Li X, Li J, Qian J, Zhang D, Shen H, Li X, et al. Loss of ribosomal RACK1 (receptor for activated protein kinase C 1)induced by phosphorylation at T50 alleviates cerebral ischemia-reperfusion injury in rats. Stroke 2019;50:162-171.
Li Y, Su F, Wang L, Liu B, Shi Z, Deng J. Autophagy and hypoxic ischemic brain injuries. Acta Physiol Sin 2017;69:316-324.
Brady NR, HamacherBrady A, Yuan H, Gottlieb RA. The autophagic response to nutrient deprivation in the HL-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J 2007;274:3184-3197.
Kawano T, Fukunaga K, Takeuchi Y, Morioka M, Yano S, Hamada J, et al. Neuroprotective effect of sodium orthovanadate on delayed neuronal death after transient forebrain ischemia in gerbil hippocampus. J Cerebral Blood Flow Metab 2001;21:1268-1280.
Zhao H, Shimohata T, Wang J, Sun G, Schaal D, Sapolsky R,et al. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J Neurosci 2005;25:9794-9806.
Hwang J, Gertner M, Pontarelli F, Court-Vazquez B,Bennett M, Ofengeim D, et al. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die. Cell Death Differ 2017;24:317-329.
Gaire B. Herbal medicine in ischemic stroke: challenges and prospective. Chin J Integr Med 2018;24:243-246.
Hu M, Zhou Z, Zhou Z, Lu H, Gao M, Liu L, et al. Effect and safety of hydroxysafflor yellow a for injection in patients with acute ischemic stroke of blood stasis syndrome: a phase Ⅱ, multicenter, randomized, double-blind, multiple-dose, active-controlled clinical trial. Chin J Integr Med 2020;26:420-427.
Wang F, Wang S, Chai L, Zhang Y, Guo H, Hu L.Xueshuantong Injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin 2018;39:998-1011.
Sheng S, Wang J, Wang L, Liu H, Li P, Liu M, et al. Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats. J Ethnopharmacol 2014;154:735-744.
Wang L, Han L, Yu H, Sang M, Liu E, Zhang Y, et al.Analysis of the constituents in "Zhu She Yong Xue Shuan Tong" by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry combined with preparative high performance liquid chromatography.Molecules 2015;20:20518-20537.
Han S, Chen Y, Wang J, Zhang Q, Han B, Ge Y, et al. Anti-thrombosis effects and mechanisms by Xueshuantong Capsule under different flow conditions. Front Pharmacol 2019;10:35.
Huang Y, Guo B, Shi B, Gao Q, Zhou Q. Chinese herbal medicine Xueshuantong enhances cerebral blood flow and improves neural functions in Alzheimer's disease mice. J Alzheimers Dis 2018;63:1089-1107.
Zhang J, Zhang B, Du M, Wang X, Li W. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction.Neural Regen Res 2016;11:292-297.
Shen Q, Li J, Zhang C, Wang P, Mohammed A, Ni S, et al.Panax notoginseng saponins reduce high-risk factors for thrombosis through peroxisome proliferator-activated receptor-γ pathway. Biomed Pharmacother 2017;96:1163-1169.
Shi X, Yu W, Liu L, Liu W, Zhang X, Yang T, et al. Panax notoginseng saponins administration modulates pro- /anti-inflammatory factor expression and improves neurologic outcome following permanent MCAO in rats. Metab Brain Dis 2017;32:221-233.
Zhou J, Yang Y, Huang Z, Zou X, Liang X. Effect of Panax notoginseng saponins on cisplatin-induced kidney injury by enhancing mitochondrial autophagy via the HIF-1α/BNIP3 pathway. Chin Pharm J 2017;52:196-200.
Shi QY, QH Z, Peng Y, Ying X, Lei W. A natural diarylheptanoid protects cortical neurons against oxygen-glucose deprivation-induced autophagy and apoptosis. J Pharm Pharmacol 2019;71:1110-1118.
Wu S, Yang T, Cen K, Zou Y, Shi X, Zhou D, et al. Panax notoginseng In vitro evaluation of the neuroprotective effect of saponins by activating the EGFR/PI3K/AKT pathway.Evid Based Complement Alternat Med 2020;2020:1403572.
Xiao HL, Zhang QH, Peng YH, Tang GY, Liao YM, Zhuang XJ, et al. 7-(4-Hydroxy-3-methoxypheny1)-1-pheny1-4E-hepten-3-one alleviates a beta 1-42 induced cytotoxicity through PI3K-mTOR pathways. Biochem Biophys Res Commun 2017;484:365-371.
Li J, Li H, Zhan D, Xiang M, Yang J, Zuo Y, et al. Niclosamide sensitizes nasopharyngeal carcinoma to radiation by downregulating Ku70/80 expression. J Cancer 2018;9:736-744.
Longa E, Weinstein P, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20:84-91.
Bederson J, Pitts L, Tsuji M, Nishimura M, Davis R,Bartkowski H. Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination. Stroke 1986;17:472-476.
Furutani R, Kibayashi K. Morphological alteration and reduction of MAP2-immunoreactivity in pyramidal neurons of cerebral cortex in a rat model of focal cortical compression. J Neurotrauma 2012;29:1266-1276.
Hendrickson ML, Ling C, Kalil RE. Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 2012;7:e46918.
Li J, Chen Y, Zhang L, Xing L, Xu H, Wang Y, et al. Total saponins of panaxnotoginseng promotes lymphangiogenesis by activation VEGF-C expression of lymphatic endothelial cells. J Ethnopharmacol 2016;193:293-302.
Zhou L, Huang PP, Chen LL, Wang P. Panax notoginseng saponins ameliorate a β-mediated neurotoxicity in c. elegans through antioxidant activities. Evid Based Complement alternat Med 2019;2019:7621043.
Sun Z, Yang H, Wang Z, Pan J, Hong Z, Chen S.Erythropoietin prevents PC12 cells from beta-amyloid-induced apoptosis via PI3K⁄Akt pathway. Transl Neurodegener 2012;1:7.
Chen S, Liu J, Liu X, Fu Y, Zhang M, Lin Q, et al. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. J Ethnopharmacol 2011;137:263-270.
Castaneda CA, Funes HC, Gomez HL, Ciruelos EM. The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer Metast Rev 2010;29:751-759.
Yan Y, Li S, Li C, Xiong Y, Lu X, Zhou X, et al. Panax notoginsenoside saponins Rb1 regulates the expressions of Akt/ mTOR/PTEN signals in the hippocampus after focal cerebral ischemia in rats. Behav Brain Res 2018;345:83-92.
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009;43:67-93.
0
浏览量
0
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构