FOLLOWUS
1.Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan (250014), China
2.Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan(250014), China
3.Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan(250014), China
4.Department of Neurology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan (250001), China
5.Department of Oncology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan (250001), China
Prof. CUI Xing, cdz45@foxmail.com
纸质出版日期:2023-02,
网络出版日期:2022-11-19,
录用日期:2022-05-18
Scan for full text
桂枝茯苓胶囊通过线粒体凋亡途径对骨髓瘤细胞凋亡的影响[J]. 中国结合医学杂志(英文版), 2023,29(2):127-136.
SUN Run-jie, XU Jie, GAO Wei, et al. Effect of Guizhi Fuling Capsule on Apoptosis of Myeloma Cells Through Mitochondrial Apoptosis Pathway[J]. Chinese Journal of Integrative Medicine, 2023,29(2):127-136.
桂枝茯苓胶囊通过线粒体凋亡途径对骨髓瘤细胞凋亡的影响[J]. 中国结合医学杂志(英文版), 2023,29(2):127-136. DOI: 10.1007/s11655-022-3624-6.
SUN Run-jie, XU Jie, GAO Wei, et al. Effect of Guizhi Fuling Capsule on Apoptosis of Myeloma Cells Through Mitochondrial Apoptosis Pathway[J]. Chinese Journal of Integrative Medicine, 2023,29(2):127-136. DOI: 10.1007/s11655-022-3624-6.
目的:
2
观察桂枝茯苓胶囊 (Guizhi Fuling Capsule
GZFLC) 对骨髓瘤细胞的作用并探讨其机制.
方法:
2
将MM1S和RPMI 8226细胞与不同浓度的血清共培养
将细胞实验分为阴性对照组 (10%、20%和40%) 、GZFLC组 (10%、20%和40%) 和对照组. 使用细胞计数试剂盒-8和流式细胞术检测骨髓瘤细胞的活性和凋亡水平. 通过ROS试剂盒和JC-1试剂盒来检测GZFLC对骨髓瘤细胞线粒体的影响. Western blot检测凋亡相关蛋白Bcl-2、Bax、Cleaved caspase-3、Cleaved Caspase-9、Cytc和Apaf-1的表达. 将2×10
7
个RPMI 8226细胞皮下接种于48只裸鼠体内
将小鼠随机分为高、中、低剂量组和对照组
分别给与840、420、210mg/kg/d或等剂量蒸馏水
连续给药15天
观察GZFLC给药组和对照组小鼠的肿瘤体积变化和存活时间. 免疫组化检测瘤体内Cytc和Apaf-1的表达水平.
结果:
2
GZFLC含药血清抑制了骨髓细胞活性、提高了骨髓细胞凋亡水平 (
P
<
0.05) . 此外
GZFLC含药血清提高了细胞内ROS水平并降低了线粒体膜电位 (
P
<
0.01) . Western blot显示GZFLC含药血清组Bcl-2/Bax比值降低
Cleaved caspase-3、Cleaved caspase-9、Cytc和Apaf-1的表达水平升高 (
P
<
0.01) . 随着时间的推移
GZFLC组小鼠的骨髓瘤体积减小
GZFLC组的小鼠生存时间高于对照组. GZFLC组小鼠荷瘤组织中Cytc和Apaf-1表达水平升高 (
P
<
0.05) .
结论:
2
GZFLC通过线粒体凋亡途径促进骨髓瘤细胞凋亡
并显著减少骨髓瘤小鼠的肿瘤体积、延长小鼠的生存时间.
Objective:
2
To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms.
Methods:
2
MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%
20% and 40%) groups
GZFLC (10%
20%
and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2)
Bcl-2-associated X (Bax)
cleaved caspase-3
-9
cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 10
7
) were subcutaneously inoculated into 48 nude mice to study the
in vivo
antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design
the high-
medium-
or low-dose GZFLC (840
420
or 210 mg/kg per day
respectively) or an equal volume of distilled water
administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry.
Results:
2
GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (
P
<
0.05). In addition
this drug increased the ROS levels and decreased the mitochondrial membrane potential (
P
<
0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups
whereas the expression levels of cleaved caspase-3
-9
Cytc and Apaf-1 were increased (all
P
<
0.01). Over time
the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased
and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (
P
<
0.05).
Conclusion:
2
GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma
which prolonged the survival times of the mice.
桂枝茯苓胶囊线粒体细胞凋亡多发性骨髓瘤
Guizhi Fuling Capsulemitochondrialapoptosismultiple myeloma
De Raeve HR, Vanderkerken K. The role of the bone marrow microenvironment in multiple myelom. Histol Histopathol 2005;20:1227-1250.
Mateos MV, San Miguel JF. Management of multiple myeloma in the newly diagnosed patient. Hematology Am Soc Hematol Educ Program 2017;2017:498-507.
Castella M, Fernández de Larrea C, Martín-Antonio B.Immunotherapy: A novel era of promising treatments for multiple myeloma. Int J Mol Sci 2018;19:3613.
de Mel S, Lim SH, Tung ML, Chng WJ. Implications of heterogeneity in multiple myeloma. Biomed Res Int 2014;2014:232546.
Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 2019;39:BSR20180992.
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015;35:S78-S103.
Wang Y, Zhang XL, Sun CM. BAY-11-7082 induces apoptosis of multiple myeloma U266 cells through inhibiting NF-κB pathway. Eur Rev Med Pharmacol Sci 2018;22:2564-2571.
Li X, Guo Y, Kuang X, Zhao L, Cheng B, Wang W, et al.Histone deacetylase inhibitor LMK-235-mediated HO-1 expression induces apoptosis in multiple myeloma mells via the JNK/AP-1 signaling pathway. Life Sci 2019;223:146-157.
Ko JH, Lee JH, Jung SH, Lee SG, Chinnathambi A, Alharbi SA, et al. 2,5-Dihydroxyacetophenone induces apoptosis of multiple myeloma cells by regulating the MAPK activation pathway. Molecules 2017;22:1157.
Wu X, Liu Y, Zhang E, Chen J, Huang X, Yan H, et al.Dihydroartemisinin modulates apoptosis and autophagy in multiple myeloma through the P38/MAPK and Wnt/β-catenin signaling pathways. Oxid Med Cell Longev 2020;2020:6096391.
Peng Y, Li F, Zhang P, Wang X, Shen Y, Feng Y, et al.IGF-1 promotes multiple myeloma progression through PI3K/Akt-mediated epithelial-mesenchymal transition. Life Sci 2020;249:117503.
Zhang ZJ. Essentials from the golden cabinet. Beijing:Chinese Ancient Books Publishing House; 1997:55.
Zheng W, Li M, Wang Y, Lv B, Zhang X, Chen L, et al.Guizhi Fuling Capsule exhibits antidysmenorrhea activity by inhibition of cyclooxygenase activity. Evid Based Complement Alternat Med 2020;2020:8607931.
Chen NN, Han M, Yang H, Yang GY, Wang YY, Wu XK, et al. Chinese herbal medicine Guizhi Fuling Formula for treatment of uterine fibroids: a systematic review of randomised clinical trials. BMC Complement Altern Med 2014;14:2.
Zhang S, Lai X, Wang X, Liu G, Wang Z, Cao L, et al.Deciphering the pharmacological mechanisms of Guizhi-Fuling Capsule on primary dysmenorrhea through network pharmacology. Front Pharmacol 2021;12:613104.
Wang X, Shi Y, Xu L, Wang Z, Wang Y, Shi W, Ma K.Traditional Chinese medicine prescription Guizhi Fuling Pills in the treatment of endometriosis. Int J Med Sci 2021;18:2401-2408.
Jeon WY, Jin SE, Seo CS, Lee MY, Shin HK, Han SC, et al. Safety assessment of Gyejibokryeong-hwan water extract: Study of acute and subacute toxicity, and influence on drug metabolizing enzymes. J Ethnopharmacol 2019;240:111913.
Wu KJ, Chen YF, Tsai HY, Wu CR, Wood WG. Guizhi Fuling Wan, a traditional Chinese herbal medicine, ameliorates memory deficits and neuronal apoptosis in the streptozotocin-induced hyperglycemic rodents via the decrease of Bax/Bcl2 ratio and caspase-3 expression. Evid Based Complement Alternat Med 2012;2012:656150.
Lee AY, Lee JY, Chun JM. Exploring the mechanism of Gyejibokryeong-hwan against atherosclerosis using network pharmacology and molecular docking. Plants (Basel) 2020;9:1750.
Park BK, Kim YH, Kim YR, Choi JJ, Yang C, Jang IS, et al. Antineuroinflammatory and neuroprotective effects of Gyejibokryeong-Hwan in lipopolysaccharide-stimulated BV2 microglia. Evid Based Complement Alternat Med 2019;2019:7585896.
Park BK, Kim YR, Kim YH, Yang C, Seo CS, Jung IC, et al. Antidepressant-like effects of Gyejibokryeong-hwan in a mouse model of reserpine-Iiduced depression. Biomed Res Int 2018;2018:5845491.
Dai Y, Qiang W, Yu X, Cai S, Lin K, Xie L, et al. Guizhi Fuling decoction inhibiting the PI3K and MAPK pathways in breast cancer cells revealed by HTS2 technology and systems pharmacology. Comput Struct Biotechnol J 2020;18:1121-1136.
Zhang B. Guizhi Fuling pills inhibit the proliferation, migration and invasion of human cutaneous malignant melanoma cells by regulating the molecular axis of LncRNA TPT1-AS1/miR-671-5p. Cell Mol Biol 2020;66:148-154.
Han L, Cao X, Chen Z, Guo X, Yang L, Zhou Y, et al.Overcoming cisplatin resistance by targeting the MTDH-PTEN interaction in ovarian cancer with sera derived from rats exposed to Guizhi Fuling wan extract. BMC Complement Med Ther 2020;20:57.
Shen Q, Ye W, Hu X, Zhao C, Zhou L, Zhu X, et al.Theffects of Guizhi Fuling Capsule drug serum on uterine leiomyoma cells and its mechanism. Evid Based Complement Alternat Med 2016;2016:2393640.
National Commission of Chinese Pharmacopoeia.Pharmacopoeia of Peoples Republic of China. Vol. 1.Beijing: China Medical Science and Technology Press;2010:984.
Zhong YX, Jin XL, Gu SY, Peng Y, Zhang KR, Ouyang BC, et al. Integrated identification, qualification and quantification strategy for pharmacokinetic profile study of Guizhi Fuling Capsule in healthy volunteers. Sci Rep 2016;6:31364.
Liao CC, Chen SH, Huang HP, Wang CJ. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). J Food Drug Anal 2018;26:620-627.
Imai M, Yokoe H, Tsubuki M, Takahashi N. Growth inhibition of human breast and prostate cancer cells by cinnamic acid derivatives and their mechanism of action.Biol Pharm Bull 2019;42:1134-1139.
Soltanian S, Riahirad H, Pabarja A, Jafari E, Khandani BK.Effect of cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru 2018;26:19-29.
Li Y, Gong L, Qi R, Sun Q, Xia X, He H, et al. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. Drug Des Devel Ther 2017;11:2481-2491.
Zhang JW, Li LX, Wu WZ, Pan TJ, Yang ZS, Yang YK. Antitumor effects of paeoniflorin on epithelial-to-mesenchymal transition in human colorectal cancer cells. Med Sci Monit 2018;24:6405-6413.
Xu HY, Chen ZW, Wu YM. Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med Oncol 2012;29:1137-1147.
Sourani Z, Pourgheysari B, Beshkar P, Shirzad H, Shirzad M. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci 2016;41:525-530.
Mosadegh Manshadi S, Safavi M, Rostami S, Nadali F, Shams Ardekani MR. Apoptosis induction of armeniacae semen extractin human acute leukemia (NALM-6 and KG-1) cells. Int J Hematol Oncol Stem Cell Res 2019;13:116-121.
Zhu Y, Wang L, Yang Z, Wang J, Li W, Zhou J, et al.Hematopoietic effects of paeoniflorin and albiflorin on radiotherapy-induced myelosuppression Mice. Evid Based Complement Alternat Med 2016;2016:5789381.
Dhupal M, Oh JM, Tripathy DR, Kim SK, Koh SB, Park KS. Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. Int J Nanomedicine 2018;23:6735-6750.
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2018;39:1419-1430.
Shen M, Hu Y, Yang Y, Wang L, Yang X, Wang B, et al.Betulinic acid induces ROS-dependent apoptosis and S-phase arrest by inhibiting the NF-κB pathway in human multiple myeloma. Oxid Med Cell Longev 2019;2019:5083158.
Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis 2007;12:913-922.
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2018;39:1419-1430.
Yang Y, Yu Y, Wang J, Li Y, Wei J, Zheng T, et al. Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. Environ Toxicol Pharmacol 2017;52:161-169.
Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag Res 2018;10:403-416.
Anwer F, Gee KM, Iftikhar A, Baig M, Russ AD, Saeed S, et al. Future of personalized therapy targeting aberrant signaling pathways in multiple myeloma. Clin Lymphoma Myeloma Leuk 2019;19:397-405.
Costa LJ, Davies FE, Monohan GP, Kovacsovics T, Burwick N, Jakubowiak A, et al. Phase 2 study of venetoclax plus carfilzomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Blood Adv 2021;5:3748-3759.
Kaufman JL, Gasparetto C, Schjesvold FH, Moreau P, Touzeau C, Facon T, et al. Targeting BCL-2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma. Am J Hematol 2021;96:418-427.
Slomp A, Peperzak V. Role and regulation of pro-survival BCL-2 proteins in multiple myeloma. Front Oncol 2018;8:533.
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构