FOLLOWUS
Department of Traditional Chinese Medicine, Medical Institute of Qinghai University, Xining (810000), China
Prof. LI Yong-ping, E-mail: 2007980002@qhu.edu.cn
纸质出版日期:2023-02,
网络出版日期:2022-12-09,
录用日期:2022-08-26
Scan for full text
井穴放血通过激活HIF-1α/BNIP3信号通路介导的线粒体自噬和降低氧化应激减轻急性高原低氧大鼠心肌损伤[J]. 中国结合医学杂志(英文版), 2023,29(2):170-178.
WANG Chao, LI Meng-xin, LI Yun-di, et al. Bloodletting Acupuncture at Jing-Well Points Alleviates Myocardial Injury in Acute Altitude Hypoxic Rats by Activating HIF-1α/BNIP3 Signaling-Mediated Mitochondrial Autophagy and Decreasing Oxidative Stress[J]. Chinese Journal of Integrative Medicine, 2023,29(2):170-178.
井穴放血通过激活HIF-1α/BNIP3信号通路介导的线粒体自噬和降低氧化应激减轻急性高原低氧大鼠心肌损伤[J]. 中国结合医学杂志(英文版), 2023,29(2):170-178. DOI: 10.1007/s11655-022-3626-4.
WANG Chao, LI Meng-xin, LI Yun-di, et al. Bloodletting Acupuncture at Jing-Well Points Alleviates Myocardial Injury in Acute Altitude Hypoxic Rats by Activating HIF-1α/BNIP3 Signaling-Mediated Mitochondrial Autophagy and Decreasing Oxidative Stress[J]. Chinese Journal of Integrative Medicine, 2023,29(2):170-178. DOI: 10.1007/s11655-022-3626-4.
目的:
2
探讨井穴放血对急性低压缺氧 (AHH) 大鼠心肌损伤的保护作用及其可能机制.
方法:
2
75只大鼠按随机数字表随机分为5组: 对照组 (
n
=15) 、模型组 (
n
=15) 、BAJP组 (
n
=15) 、BAJP+3-甲基腺嘌呤 (3-MA) 组 (
n
=15) 和BANA组 (非穴位针刺放血
尾部放血
n=15) . 除对照组外
其余各组均建立AHH大鼠模型
并采用相应的治疗方法. 采用酶联免疫吸附试验 (ELISA) 检测血清肌酸激酶同工酶MB (CK-MB) 和心肌肌钙蛋白I (CTnI) 水平以及心肌组织超氧化物歧化酶 (SOD) 和丙二醛 (MDA) 水平. 苏木精-伊红 (HE) 染色观察心肌损伤
末端脱氧核苷酸转移酶介导的dUTP生物素缺口末端标记 (TUNEL) 染色观察细胞凋亡. 透射电镜观察心肌线粒体损伤和自噬体. JC-1荧光染色法分析心肌线粒体膜电位. 线粒体呼吸链复合物测定试剂盒检测心肌线粒体呼吸链复合体 (Ⅰ、Ⅲ和Ⅳ) 活性和ATP酶. Western blot分析检测自噬指标、缺氧诱导因子-1α (HIF-1α) /Bcl-2和腺病毒E1B 19k Da相互作用蛋白3 (BNIP3) 信号通路.
结果:
2
BAJP减轻AHH大鼠心肌损伤
抑制心肌细胞凋亡. BAJP预处理降低了AHH大鼠的MDA水平
增加了SOD水平 (均
P
<
0.01) . 此外
BAJP预处理增加了AHH大鼠的线粒体膜电位 (
P
<
0.01) 、线粒体呼吸链复合体 (复合体Ⅰ、Ⅲ和Ⅳ) 活性 (
P
<
0.01) 和线粒体ATP酶活性 (
P
<
0.05) . 电子显微镜的结果表明
BAJP预处理改善了AHH大鼠心肌线粒体肿胀并增加了自噬体数量. 此外
BAJP预处理激活了HIF-1α/BNIP3通路和自噬. 最后
在BAJP治疗的AHH大鼠中使用3-MA抑制自噬的结果表明
自噬的抑制减弱了BAJP对AHH大鼠的治疗效果
进一步证明自噬是BAJP治疗AHH的潜在靶点.
结论:
2
BAJP是AHH诱导心肌损伤的有效治疗方法
其机制可能与增加HIF-1α/BNIP3信号介导的自噬和降低氧化应激有关.
Objective:
2
To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat.
Methods:
2
Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (
n
=15)
a model group (
n
=15)
a BAJP group (
n
=15)
a BAJP+3-methyladenine (3-MA) group (
n
=15)
and a BANA (bloodletting at nonacupoint; tail bleeding
n
=15) group. Except for the control group
the AHH rat model was established in the other groups
and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury
and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex Ⅰ
Ⅲ
and Ⅳ) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling.
Results:
2
BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all
P
<
0.01). Moreover
BAJP pretreatment increased the mitochondrial membrane potential (
P
<
0.01)
mitochondrial respiratory chain complex (complexes Ⅰ
Ⅲ
and Ⅳ) activities (
P
<
0.01)
and mitochondrial ATPase activity in AHH rats (
P
<
0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition
BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally
the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats
further proving that autophagy constitutes a potential target for BAJP treatment of AHH.
Conclusion:
2
BAJP is an effective treatment for AHH-induced myocardial injury
and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.
急性低压低氧针刺井穴放血自噬心肌损伤线粒体损伤中医
acute hypobaric hypoxiabloodletting acupuncture at Jing-well pointsautophagymyocardium injurymitochondrial damageChinese medicine
Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, et al.EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol Biol Evolu 2019;36:2591-2603.
Li K, He C. Gastric mucosal lesions in Tibetans with high-altitude polycythemia show increased HIF-1A expression and ROS production. Bio Med Res Int 2019;2019:6317015-6317015.
Sydykov A, Mamazhakypov A, Maripov A, Kosanovic D, Weissmann N, Ghofrani HA, et al. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders.Int J Environ Res Public Health 2021;18:1692.
Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 2007;115:1132-1146.
Wei Y, Zhang J, Xu S, Peng X, Yan X, Li X, et al.Controllable oxidative stress and tissue specificity in major tissues during the torpor-arousal cycle in hibernating Daurian ground squirrels. Open Biol 2018;8:180068.
Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, et al.Role of commensal microbes in the γ-Ray irradiation-Induced physiological changes in drosophila melanogaster.Microorganisms 2020;9:31.
Salvi A, Patki G, Khan E, Asghar M, Salim S. Protective effect of tempol on buthionine sulfoximine-induced mitochondrial impairment in hippocampal derived HT22 cells. Oxid Med Cell Longev 2016;2016:5059043.
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and paradoxical roles of anti-oxidative nutritional support for non-alcoholic fatty liver disease. Nutrients 2018;10:977.
Popkov VA, Silachev DN, Zalevsky AO, Zorov DB, Plotnikov EY. Mitochondria as a source and a target for uremic toxins. Int J Mol Sci 2019;20:3094.
Jia CM, Zhang FW, Wang SJ, Wang W, Li Y. Tea polyphenols prevent sepsis-induced lung injury via promoting translocation of DJ-1 to mitochondria. Front Cell Dev Biol 2021;9:622507-622507.
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007;100:914-922.
Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res 2009;104:150-158.
Chi Y, Shi C, Zhao Y, Guo C. Forkhead box O (FOXO) 3 modulates hypoxia-induced autophagy through AMPK signalling pathway in cardiomyocytes. Biosci Rep 2016;36:e00345.
Tang H, Qin S, Li W, Chen X, Ulloa L, Zhu Q, et al. P2RX7 in dopaminergic neurons of ventral periaqueductal gray mediates HTWP acupuncture-induced consciousness in traumatic brain injury. Front Cell Neurosci 2021;14:598198-598198.
Zhu QM, Yu NN, Liu BH, Guo Y, Chen ZL, Tang HL, et al. Research advances in the clinical effect of bloodletting puncture at well-points in treatment of acute central nervous injury. Acupunct Res (Chin) 2019;44:854-857.
Yu NN, Xu ZF, Gao Y, Zhou ZL, Zhao X, Zhou D, et al.Wake-promoting effect of bloodletting puncture at hand twelve jing-well points in acute stroke patients: a multi-center randomized controlled trial. Chin J Integr Med 2021;27:570-577.
Yu N, Wang Z, Chen Y, Yang J, Lu X, Guo Y, et al. The ameliorative effect of bloodletting puncture at hand twelve Jing-well points on cerebral edema induced by permanent middle cerebral ischemia via protecting the tight junctions of the blood-brain barrier. BMC Complement Altern Med 2017;17:470.
Li B, Zhou X, Yi TL, Xu ZW, Peng DW, Guo Y, et al.Bloodletting puncture at hand twelve jing-well points improves neurological recovery by ameliorating acute traumatic brain injury-induced coagulopathy in mice. Front Neurosci 2020;14:403.
Guo HC, Zhang Z, Zhang LN, Xiong C, Feng C, Liu Q, et al. Chronic intermittent hypobaric hypoxia protects the heart against ischemia/reperfusion injury through upregulation of antioxidant enzymes in adult guinea pigs. Acta Pharmacol Sin 2009;30:947-955.
Aguilar M, González-Candia A, Rodríguez J, Carrasco-Pozo C, Cañas D, García-Herrera C, et al. Mechanisms of cardiovascular protection associated with intermittent hypobaric hypoxia exposure in a rat model: role of oxidative stress. Int J Mol Sci 2018;19:366.
Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, et al.Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009;104:1209-1216.
Hu S, Yan G, Xu H, He W, Liu Z, Ma G. Hypoxic preconditioning increases survival of cardiac progenitor cells via the pim-1 kinase-mediated anti-apoptotic effect.Circ J 2014;78:724-731.
Han K, Su X, Liu J, Yao F, Lu F. Red cell distribution width as a novel marker for different types of atrial fibrillation in low and high altitude. Cardiol Res Pract 2019;2019:6291964.
Farias JG, Jimenez D, Osorio J, Zepeda AB, Figueroa CA, Pulgar VM. Acclimatization to chronic intermittent hypoxia in mine workers: a challenge to mountain medicine in Chile.Biol Res 2013;46:59-67.
Farias JG, Osorio J, Soto G, Brito J, Siques P, Reyes JG. Sustained acclimatization in Chilean mine workers subjected to chronic intermittent hypoxia. High Alt Med Biol 2006;7:302-306.
Jing L, Shao J, Zhao T, He L, Ma H. Protective effect of 5, 6, 7, 8-trtrahydroxyflavone against acute hypobaric hypoxia induced-oxidative stress in mice. Pak J Pharm Sci 2021;34:513-519.
Wang D, Jiang L, Feng B, He N, Zhang Y, Ye H. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J Diabetes Investig 2020;11:39-51.
Schilling JD. The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Antioxid Redox Signal 2015;22:1515-1526.
Shen GX. Mitochondrial dysfunction, oxidative stress and diabetic cardiovascular disorders. Cardiovasc Hematol Disord Drug Targets 2012;12:106-112.
Sugasawa T, Ono S, Yonamine M, Fujita SI, Matsumoto Y, Aoki K, et al. One week of CDAHFD induces steatohepatitis and mitochondrial dysfunction with oxidative stress in liver.Int J Mol Sci 2021;22:5851.
Guo Y, Wang S, Liu Y, Fan L, Booz GW, Roman RJ, et al. Accelerated cerebral vascular injury in diabetes is associated with vascular smooth muscle cell dysfunction.Geroscience 2020;42:547-561.
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem 2018;552:50-59.
Long S, Ren D, Zhong F, Niu Y, Qin X, Mu D, et al. Reversal of glucocorticoid resistance in acute lymphoblastic leukemia cells by miR-145. Peer J 2020;8:e9337.
Shi ZY, Deng JX, Fu S, Wang L, Wang Q, Liu B, et al.Protective effect of autophagy in neural ischemia and hypoxia: negative regulation of the Wnt/β-catenin pathway.Int J Mol Med 2017;40:1699-1708.
Lee S, Hallis SP, Jung KA, Ryu D, Kwak MK. Impairment of HIF-1α-mediated metabolic adaption by NRF2-silencing in breast cancer cells. Redox Biol 2019;24:101210.
Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009;29:2570-2581.
Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, et al.Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013;152:290-303.
Jimenez RE, Kubli DA, Gustafsson ÅB. Autophagy and mitophagy in the myocardium: therapeutic potential and concerns. Br J Pharmacol 2014;171:1907-1916.
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson ÅB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 2012;287:19094-19104.
Tu Y, Miao XM, Yi TL, Chen XY, Sun HT, Cheng SX, et al. Neuroprotective effects of bloodletting at Jing points combined with mild induced hypothermia in acute severe traumatic brain injury. Neural Regen Res 2016;11:931-936.
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构